DocumentCode
154019
Title
On Dynamic Flow-Sensitive Floating-Label Systems
Author
Buiras, Pablo ; Stefan, Deian ; Russo, Alejandro
fYear
2014
fDate
19-22 July 2014
Firstpage
65
Lastpage
79
Abstract
Flow-sensitive analysis for information-flow control (IFC) allows data structures to have mutable security labels, i.e., labels that can change over the course of the computation. This feature is often used to boost the permissiveness of the IFC monitor, by rejecting fewer programs, and to reduce the burden of explicit label annotations. However, when added naively, in a purely dynamic setting, mutable labels can expose a high bandwidth covert channel. In this work, we present an extension for LIO-a language-based floating-label system-that safely handles flow-sensitive references. The key insight to safely manipulating the label of a reference is to not only consider the label on the data stored in the reference, i.e., the reference label, but also the label on the reference label itself. Taking this into consideration, we provide an upgrade primitive that can be used to change the label of a reference in a safe manner. To eliminate the burden of determining when a reference should be upgraded, we additionally provide a mechanism for automatic upgrades. Our approach naturally extends to a concurrent setting, not previously considered by dynamic flow-sensitive systems. For both our sequential and concurrent calculi, we prove non-interference by embedding the flow-sensitive system into the flow-insensitive LIO calculus, a surprising result on its own.
Keywords
data structures; security of data; IFC; LIO language; concurrent calculus; data structures; dynamic flow-sensitive floating-label systems; flow-sensitive analysis; flow-sensitive reference handling; information flow control; security labels; sequential calculus; Calculus; Context; Monitoring; Security; Semantics; Standards; Syntactics; Flow-sensitivity analysis; Haskell; concurrency; dynamic monitors; floating-label systems;
fLanguage
English
Publisher
ieee
Conference_Titel
Computer Security Foundations Symposium (CSF), 2014 IEEE 27th
Conference_Location
Vienna
Type
conf
DOI
10.1109/CSF.2014.13
Filename
6957103
Link To Document