Author :
Armenise, Mario N. ; Passaro, Vittorio M N ; De Leonardis, Francesco ; Armenise, Michele
Abstract :
In this paper, we report, for the first time to our knowledge, the modeling and the design of a miniaturized integrated optical sensor, based on a multiple quantum-well (MQW) microring laser, to be used in gyroscope systems. The device can be fully integrated on a single chip and used either in low (e.g., vehicles for land transport) or high (e.g., ships, airplanes, spaceborne platforms) sensitivity navigation systems. The model includes the influence of some physical effects, such as quantum noise, lock in, thermal effect, and sidewall roughness-induced losses. Very good performance has been obtained in terms of gyro quantum limit, operating regions of detectable velocity, thermal range of operation, and power consumption. The proposed architecture shows significant manifold advantages with respect to other existing optical solutions: no polarization-induced noise, no use of frequency-locking techniques, negligible bending losses, high cavity quality factor, complete evaluation of the rotation speed, predictable thermal variation of the gyro scale factor, and very high dynamic range
Keywords :
attitude measurement; electro-optical modulation; gyroscopes; measurement by laser beam; micro-optics; optical design techniques; optical directional couplers; optical noise; optical sensors; photodetectors; quantum well lasers; ring lasers; MQW microring laser; airplanes; bending losses; detectable velocity; frequency-locking techniques; gyro quantum limit; gyroscope systems; high cavity quality factor; land transport; miniaturized integrated optical sensor design modelling; navigation systems; physical effects; quantum noise; rotation speed; ships; sidewall roughness-induced losses; spaceborne platforms; thermal effect; thermal operation range; vehicles; very high dynamic range; Integrated optics; Laser mode locking; Laser noise; Laser theory; Optical design; Optical losses; Optical noise; Optical sensors; Quantum well devices; Quantum well lasers;