DocumentCode :
1542485
Title :
High-T/sub c/ bolometers with silicon-nitride spiderweb suspension for far-infrared detection
Author :
de Nivelle, M.J.M.E. ; Bruijn, M.P. ; de Korte, P.A.J. ; Sanchez, S. ; Elwenspoek, M. ; Heidenblut, T. ; Schwierzi, B. ; Michalke, W. ; Steinbeiss, E.
Author_Institution :
Space Res. Organ., Utrecht, Netherlands
Volume :
9
Issue :
2
fYear :
1999
fDate :
6/1/1999 12:00:00 AM
Firstpage :
3350
Lastpage :
3353
Abstract :
High-T/sub c/ GdBa/sub 2/Cu/sub 3/O/sub 7-/spl delta//(GBCO) superconducting transition edge bolometers with operating temperatures near 90 K have been made with both closed silicon-nitride membranes and patterned silicon-nitride (SiN) spiderweb-like suspension structures. As a substrate silicon-on-nitride (SON) wafers are used which are made by fusion bonding of a silicon wafer to a silicon wafer with a silicon-nitride top layer. The resulting monocrystalline silicon top layer on the silicon-nitride membranes enables the epitaxial growth of GBCO. By patterning the silicon-nitride the thermal conductance G is reduced from about 20 to 3 /spl mu/W/K. The noise of both types of bolometers is dominated by the intrinsic noise from phonon fluctuations in the thermal conductance G. The optical efficiency in the far infrared is about 75% due to a goldblack absorption layer. The noise equivalent power NEP for FIR detection is 1.8 pW//spl radic/Hz, and the detectivity D* is 5.4/spl times/10/sup 10/ cm /spl radic/Hz/W. Time constants are 0.1 and 0.6 s, for the closed membrane and the spiderweb like bolometers respectively. The effective time constant can be reduced with about a factor 3 by using voltage bias. Further reduction necessarily results in an increase of the NEP due to the 1/f noise of the superconductor.
Keywords :
1/f noise; barium compounds; bolometers; gadolinium compounds; high-temperature superconductors; infrared detectors; superconducting device noise; superconducting epitaxial layers; superconducting junction devices; 1/f noise; GdBa/sub 2/Cu/sub 3/O/sub 7-/spl delta//; GdBa/sub 2/Cu/sub 3/O/sub 7/; HTSC bolometers; SiN; closed silicon-nitride membranes; detectivity; effective time constant; epitaxial growth; far-infrared detection; fusion bonding; goldblack absorption layer; intrinsic noise; noise equivalent power; optical efficiency; patterning; phonon fluctuations; reduced thermal conductance; silicon-nitride spiderweb suspension; silicon-on-nitride wafer substrate; superconducting transition edge bolometers; voltage bias; Biomembranes; Bolometers; Noise reduction; Optical noise; Silicon; Superconducting device noise; Superconducting epitaxial layers; Superconducting photodetectors; Superconducting transition temperature; Thermal conductivity;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/77.783747
Filename :
783747
Link To Document :
بازگشت