DocumentCode :
1543543
Title :
Improving the Mixed Formulation for Meshless Local Petrov–Galerkin Method
Author :
Fonseca, Alexandre R. ; Corrêa, Bruno C. ; Silva, Elson J. ; Mesquita, Renato C.
Author_Institution :
Dept. of Comput., Fed. Univ. of Jequitinhonha & Mucuri Valleys, Diamantina, Brazil
Volume :
46
Issue :
8
fYear :
2010
Firstpage :
2907
Lastpage :
2910
Abstract :
The meshless local Petrov-Galerkin method (MLPG) with a mixed formulation to impose Dirichlet boundary conditions is investigated in this paper. We propose the use of Shepard functions for inner nodes combined with the radial point interpolation method with polynomial terms (RPIMp) for nodes over the Dirichlet boundaries. Whereas the Shepard functions have lower computational costs, the RPIMp imposes the essential boundary conditions in a direct manner. Results show that the proposed technique leads to a good tradeoff between computational time and precision.
Keywords :
boundary-value problems; functions; interpolation; polynomial approximation; Dirichlet boundary conditions; Shepard functions; meshless local Petrov-Galerkin method; mixed formulation; polynomial terms; radial point interpolation; Boundary conditions; Computational efficiency; Interpolation; Lagrangian functions; Least squares approximation; Least squares methods; Mesh generation; Multilevel systems; Polynomials; Shape; Boundary conditions; meshless local Petrov–Galerkin method (MLPG); meshless methods; mixed formulation;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2010.2043513
Filename :
5512983
Link To Document :
بازگشت