DocumentCode :
1544174
Title :
High-speed multi-target detection with narrowband radar
Author :
Su, Jianhui ; Xing, Mengdao ; Wang, Guibin ; Bao, Zhen
Author_Institution :
Key Lab. of Radar Signal Process., Xidian Univ., Xi´an, China
Volume :
4
Issue :
4
fYear :
2010
fDate :
8/1/2010 12:00:00 AM
Firstpage :
595
Lastpage :
603
Abstract :
High-speed multi-target detection is a challenging problem in radar applications. Typically, targets with high speed go through several range cells in the observation period, which makes it more difficult to obtain each target´s power coherently accumulated for target detection. In this study, novel multi-target detection with a narrowband radar system is proposed. In order to remove range migration and obtain coherent integration of the target energy, the Keystone transform is applied to the moving targets. However, because of the high target velocity and the low radar pulse repetition frequency phase ambiguity will occur, so the range migration will not be corrected properly. Then the phase ambiguity function of the kth target is compensated, and the envelope of the kth target concentrates in a certain range cell. Following by frequency modulation rate search a quadratic phase term is compensated, and the signal energy is finally coherently accumulated by FT analysis. The target is detected if the ratio of peak value to noise is higher than a predetermined threshold. For target detection in low signal-to-noise ratio (SNR), the Clean technique is applied. The proposed algorithm is verified by simulation and raw radar data results.
Keywords :
Fourier transforms; object detection; radar detection; radar imaging; Clean technique; FT analysis; Keystone transform; SNR; coherent integration; frequency modulation rate search; high-speed multitarget detection; moving targets; narrowband radar system; phase ambiguity function; radar pulse repetition frequency; range migration; signal-to-noise ratio; target velocity;
fLanguage :
English
Journal_Title :
Radar, Sonar & Navigation, IET
Publisher :
iet
ISSN :
1751-8784
Type :
jour
DOI :
10.1049/iet-rsn.2008.0160
Filename :
5514429
Link To Document :
بازگشت