DocumentCode :
1544665
Title :
Maximizing text-mining performance
Author :
Weiss, Sholom M. ; Apte, Chidamand ; Damerau, Fred J. ; Johnson, D.E. ; Oles, Frank J. ; Goetz, Thilo ; Hampp, T.
Author_Institution :
IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA
Volume :
14
Issue :
4
Firstpage :
63
Lastpage :
69
Abstract :
The authors´ adaptive resampling approach surpasses previous decision-tree performance and validates the effectiveness of small, pooled local dictionaries. They demonstrate their approach using the Reuters-21578 benchmark data and a real-world customer E-mail routing system
Keywords :
adaptive systems; data mining; data warehouses; decision trees; dictionaries; electronic mail; full-text databases; sampling methods; software performance evaluation; Reuters-21578 benchmark data; adaptive resampling approach; customer electronic mail routing system; decision trees; performance maximization; pooled local dictionaries; text mining; Classification tree analysis; Decision trees; Degradation; Dictionaries; History; Humans; Mood; Nearest neighbor searches; Prediction methods; Testing;
fLanguage :
English
Journal_Title :
Intelligent Systems and their Applications, IEEE
Publisher :
ieee
ISSN :
1094-7167
Type :
jour
DOI :
10.1109/5254.784086
Filename :
784086
Link To Document :
بازگشت