DocumentCode :
1546103
Title :
Markovian reconstruction using a GNC approach
Author :
Nikolova, Mila
Author_Institution :
UFR Math. et Inf., Univ. Rene Descartes, Paris, France
Volume :
8
Issue :
9
fYear :
1999
fDate :
9/1/1999 12:00:00 AM
Firstpage :
1204
Lastpage :
1220
Abstract :
This paper is concerned with the reconstruction of images (or signals) from incomplete, noisy data, obtained at the output of an observation system. The solution is defined in maximum a posteriori (MAP) sense and it appears as the global minimum of an energy function joining a convex data-fidelity term and a Markovian prior energy. The sought images are composed of nearly homogeneous zones separated by edges and the prior term accounts for this knowledge. This term combines general nonconvex potential functions (PFs) which are applied to the differences between neighboring pixels. The resultant MAP energy generally exhibits numerous local minima. Calculating its local minimum, placed in the vicinity of the maximum likelihood estimate, is inexpensive but the resultant estimate is usually disappointing. Optimization using simulated annealing is practical only in restricted situations. Several deterministic suboptimal techniques approach the global minimum of special MAP energies, employed in the field of image denoising, at a reasonable numerical cost. The latter techniques are not directly applicable to general observation systems, nor to general Markovian prior energies. This work is devoted to the generalization of one of them, the graduated nonconvexity (GNC) algorithm, in order to calculate nearly-optimal MAP solutions in a wide range of situations. In fact, GNC provides a solution by tracking a set of minima along a sequence of approximate energies, starting from a convex energy and progressing toward the original energy. In this paper, we develop a common method to derive efficient GNC-algorithms for the minimization of MAP energies which arise in the context of any observation system giving rise to a convex data-fidelity term and of Markov random field (MRF) energies involving any nonconvex and/or nonsmooth PFs. As a side-result, we propose how to construct pertinent initializations which allow us to obtain meaningful solutions using local minimization of these MAP energies. Two numerical experiments-an image deblurring and an emission tomography reconstruction-illustrate the performance of the proposed technique
Keywords :
Markov processes; emission tomography; image reconstruction; maximum likelihood estimation; medical image processing; noise; random processes; simulated annealing; MAP energies; MRF energies; Markov random field; Markovian prior energy; Markovian reconstruction; convex data-fidelity term; convex energy; deterministic suboptimal techniques; efficient GNC-algorithms; emission tomography reconstruction; energy function; general nonconvex potential functions; global minimum; graduated nonconvexity algorithm; image deblurring; image denoising; image reconstruction; incomplete noisy data; local minimization; maximum a posteriori solution; maximum likelihood estimate; nonconvex PF; nonsmooth PF; numerical cost; numerical experiments; observation system output; pixels; signal reconstruction; simulated annealing; Costs; Extraterrestrial measurements; Fourier transforms; Image denoising; Image reconstruction; Inverse problems; Maximum likelihood estimation; Optical distortion; Simulated annealing; Tomography;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.784433
Filename :
784433
Link To Document :
بازگشت