Title :
Approximate maximum likelihood hyperparameter estimation for Gibbs priors
Author :
Zhou, Zhenyu ; Leahy, Richard M. ; Qi, Jinyi
Author_Institution :
Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA
fDate :
6/1/1997 12:00:00 AM
Abstract :
The parameters of the prior, the hyperparameters, play an important role in Bayesian image estimation. Of particular importance for the case of Gibbs priors is the global hyperparameter, β, which multiplies the Hamiltonian. Here we consider maximum likelihood (ML) estimation of β from incomplete data, i.e., problems in which the image, which is drawn from a Gibbs prior, is observed indirectly through some degradation or blurring process. Important applications include image restoration and image reconstruction from projections. Exact ML estimation of β from incomplete data is intractable for most image processing. Here we present an approximate ML estimator that is computed simultaneously with a maximum a posteriori (MAP) image estimate. The algorithm is based on a mean field approximation technique through which multidimensional Gibbs distributions are approximated by a separable function equal to a product of one-dimensional (1-D) densities. We show how this approach can be used to simplify the ML estimation problem. We also show how the Gibbs-Bogoliubov-Feynman (GBF) bound can be used to optimize the approximation for a restricted class of problems. We present the results of a Monte Carlo study that examines the bias and variance of this estimator when applied to image restoration
Keywords :
Bayes methods; Monte Carlo methods; approximation theory; image reconstruction; image restoration; inverse problems; maximum likelihood estimation; Bayesian image estimation; Gibbs priors; Gibbs-Bogoliubov-Feynman bound; Hamiltonian; MAP estimation; MLE; Monte Carlo study; approximate estimation; blurring process; degradation; estimator bias; estimator variance; global hyperparameter; hyperparameter estimation; image processing; image reconstruction; image restoration; incomplete data; maximum a posteriori (MAP) image estimate; maximum likelihood estimation; mean field approximation technique; multidimensional Gibbs distributions; separable function; Approximation algorithms; Bayesian methods; Covariance matrix; Degradation; Image processing; Image reconstruction; Image restoration; Inverse problems; Maximum likelihood estimation; Parameter estimation;
Journal_Title :
Image Processing, IEEE Transactions on