Title :
Fast Inference with Min-Sum Matrix Product
Author :
Felzenszwalb, Pedro F. ; McAuley, Julian J.
Author_Institution :
Dept. of Comput. Sci., Univ. of Chicago, Chicago, IL, USA
Abstract :
The MAP inference problem in many graphical models can be solved efficiently using a fast algorithm for computing min-sum products of n × n matrices. The class of models in question includes cyclic and skip-chain models that arise in many applications. Although the worst-case complexity of the min-sum product operation is not known to be much better than O(n3), an O(n2.5) expected time algorithm was recently given, subject to some constraints on the input matrices. In this paper, we give an algorithm that runs in O(n2 log n) expected time, assuming that the entries in the input matrices are independent samples from a uniform distribution. We also show that two variants of our algorithm are quite fast for inputs that arise in several applications. This leads to significant performance gains over previous methods in applications within computer vision and natural language processing.
Keywords :
computational complexity; computer graphics; inference mechanisms; matrix multiplication; MAP inference problem; computational complexity; computer vision; cyclic model; graphical model; input matrices; min-sum product computing; min-sum product operation; natural language processing; skip-chain model; time algorithm; worst case complexity; Algorithm design and analysis; Belief propagation; Computational modeling; Graphical models; Heuristic algorithms; Inference algorithms; Graphical models; MAP inference; min-sum matrix product.;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2011.121