Title :
An axiomatic approach to soft learning vector quantization and clustering
Author :
Karayiannis, Nicolaos B.
Author_Institution :
Dept. of Electr. & Comput. Eng., Houston Univ., TX, USA
fDate :
9/1/1999 12:00:00 AM
Abstract :
This paper presents an axiomatic approach to soft learning vector quantization (LVQ) and clustering based on reformulation. The reformulation of the fuzzy c-means (FCM) algorithm provides the basis for reformulating entropy-constrained fuzzy clustering (ECFC) algorithms. According to the proposed approach, the development of specific algorithms reduces to the selection of a generator function. Linear generator functions lead to the FCM and fuzzy learning vector quantization algorithms while exponential generator functions lead to ECFC and entropy-constrained learning vector quantization algorithms. The reformulation of LVQ and clustering algorithms also provides the basis for developing uncertainty measures that can identify feature vectors equidistant from all prototypes. These measures are employed by a procedure developed to make soft LVQ and clustering algorithms capable of identifying outliers in the data set. This procedure is evaluated by testing the algorithms generated by linear and exponential generator functions on speech data
Keywords :
entropy; fuzzy set theory; learning (artificial intelligence); neural nets; optimisation; speech recognition; vector quantisation; clustering; entropy; fuzzy c-means; generator function selection; neural nets; optimisation; outlier identification; reformulation; soft learning vector quantization; speech recognition; uncertainty measure; Algorithm design and analysis; Clustering algorithms; Entropy; Measurement uncertainty; Minimization methods; Partitioning algorithms; Prototypes; Speech analysis; Testing; Vector quantization;
Journal_Title :
Neural Networks, IEEE Transactions on