DocumentCode :
1552228
Title :
Exact finite-dimensional filters for doubly stochastic auto-regressive processes
Author :
Krishnamurthy, Vikram ; Elliott, Robert J.
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
Volume :
42
Issue :
9
fYear :
1997
fDate :
9/1/1997 12:00:00 AM
Firstpage :
1289
Lastpage :
1293
Abstract :
In this paper, we derive exact finite-dimensional recursive filters for a class of doubly stochastic auto-regressive (AR) models. We assume that the parameters of the doubly stochastic AR process vary according to a nonlinear polynomial function of a Gaussian state-space process. Apart from being of mathematical interest, these finite-dimensional filters have potential applications in time-series analysis and image-enhanced tracking of maneuvering targets
Keywords :
autoregressive processes; computational complexity; filtering theory; image processing; polynomial matrices; probability; recursive filters; state-space methods; Gaussian state-space process; doubly stochastic autoregressive models; finite-dimensional filters; image-enhanced tracking; nonlinear polynomial function; probability; recursive filters; time-series; Hidden Markov models; Image analysis; Nonlinear filters; Polynomials; Random variables; Signal processing; Stochastic processes; Stochastic resonance; Target tracking; Time series analysis;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.623095
Filename :
623095
Link To Document :
بازگشت