DocumentCode :
1552319
Title :
Penalized discriminant analysis of in situ hyperspectral data for conifer species recognition
Author :
Yu, Bin ; Ostland, I. Michael ; Gong, Peng ; Pu, Ruiliang
Author_Institution :
Dept. of Stat., California Univ., Berkeley, CA, USA
Volume :
37
Issue :
5
fYear :
1999
fDate :
9/1/1999 12:00:00 AM
Firstpage :
2569
Lastpage :
2577
Abstract :
Using in situ hyperspectral measurements collected in the Sierra Nevada Mountains in California, the authors discriminate six species of conifer trees using a recent, nonparametric statistics technique known as penalized discriminant analysis (PDA). A classification accuracy of 76% is obtained. Their emphasis is on providing an intuitive, geometric description of PDA that makes the advantages of penalization clear. PDA is a penalized version of Fisher´s linear discriminant analysis (LDA) and can greatly improve upon LDA when there are a large number of highly correlated variables
Keywords :
forestry; geophysical techniques; infrared spectra; remote sensing; vegetation mapping; visible spectra; 300 to 900 nm; Abies; California; California black oak; Calocedrus decurrens; Douglas fir; Fisher´s linear discriminant analysis; IR spectra; Pinus; Pseudotsuga; Quercus kelloggii; Sequoiadendron; Sierra Nevada Mountains; USA; United States; classification accuracy; conifer; conifer trees; fir tree; forest; forestry; geometric description; giant sequoia; hyperspectral remote sensing; in situ hyperspectral data; incense cedar; measurement technique; multispectral remote sensing; nonparametric statistics; optical imaging; penalization; penalized discriminant analysis; pine tree; species recognition; spectral method; vegetation mapping; visible spectra; Artificial neural networks; Biochemistry; Hyperspectral imaging; Hyperspectral sensors; Large-scale systems; Linear discriminant analysis; Protection; Resource management; Soil measurements; Statistical analysis;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/36.789651
Filename :
789651
Link To Document :
بازگشت