DocumentCode :
1554034
Title :
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
Author :
Andrieu, Christophe ; Doucet, Arnaud
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
Volume :
47
Issue :
10
fYear :
1999
fDate :
10/1/1999 12:00:00 AM
Firstpage :
2667
Lastpage :
2676
Abstract :
In this paper, the problem of joint Bayesian model selection and parameter estimation for sinusoids in white Gaussian noise is addressed. An original Bayesian model is proposed that allows us to define a posterior distribution on the parameter space. All Bayesian inference is then based on this distribution. Unfortunately, a direct evaluation of this distribution and of its features, including posterior model probabilities, requires evaluation of some complicated high-dimensional integrals. We develop an efficient stochastic algorithm based on reversible jump Markov chain Monte Carlo methods to perform the Bayesian computation. A convergence result for this algorithm is established. In simulation, it appears that the performance of detection based on posterior model probabilities outperforms conventional detection schemes
Keywords :
Bayes methods; Gaussian noise; Markov processes; Monte Carlo methods; convergence of numerical methods; parameter estimation; probability; signal detection; white noise; Bayesian inference; Bayesian model estimation; Bayesian model selection; Markov chain Monte Carlo methods; convergence; detection performance; efficient stochastic algorithm; high-dimensional integrals; joint estimation; noisy sinusoids; parameter estimation; parameter space; posterior distribution; posterior model probabilities; reversible jump MCMC; simulation; white Gaussian noise; Bayesian methods; Computational modeling; Convergence; Frequency estimation; Gaussian noise; Inference algorithms; Maximum likelihood estimation; Parameter estimation; Spectral analysis; Stochastic processes;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.790649
Filename :
790649
Link To Document :
بازگشت