DocumentCode :
1554052
Title :
Baseline Architecture of ITER Control System
Author :
Wallander, A. ; Maio, F. Di ; Journeaux, J.-Y. ; Klotz, W.-D. ; Makijarvi, P. ; Yonekawa, I.
Author_Institution :
ITER Organ., St. Paul-lez-Durance, France
Volume :
58
Issue :
4
fYear :
2011
Firstpage :
1433
Lastpage :
1438
Abstract :
The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.
Keywords :
Tokamak devices; distributed control; feedback; high energy physics instrumentation computing; plasma toroidal confinement; ITER control system; baseline architecture; bounded subsystem; computers processing; distributed control; feed-back control; hardware component; market surveys; minimum human intervention; plant control; software component; Computer architecture; Control systems; Open systems; Real time systems; Safety; Servers; Software; Architecture; EPICS; ITER; control system;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2011.2154341
Filename :
5876286
Link To Document :
بازگشت