Title :
Exact and Closed-Form Cutoff Wavenumbers of Elliptical Dielectric Waveguides
Author :
Zouros, Grigorios P. ; Roumeliotis, John A.
Author_Institution :
Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens, Greece
Abstract :
The cutoff wavenumbers of the elliptical dielectric waveguide are calculated exactly and analytically. Two separate methods are used to solve this problem. The first method is based on the separation of variables technique using Mathieu functions and gives the exact cutoff wavenumbers. The system matrices of which the roots of their determinant should be determined are complicated because of the nonexistence of orthogonality relations for Mathieu functions, due to the different constitutive parameters between the core and the cladding of the fiber. In the second method, the cutoff wavenumbers are obtained through analytical expressions, when the eccentricity h of the elliptical core is specialized to small values. In the latter case, analytical closed-form algebraic expressions, free of Mathieu functions, are obtained for the expansion coefficients gsn(2) in the resulting relation x1,sn(h)=x1,sn(0)[1+gsn(2)h2+O(h4)] for the cutoff wavenumbers, where x1,sn(0) are the normalized cutoff wavenumbers of the circular dielectric waveguide. These expressions are valid for every different value of s and n , corresponding to every higher order hybrid mode. Numerical results are given for various higher order modes, as well as a comparison with the exact solution.
Keywords :
algebra; dielectric waveguides; functions; optical fibres; optical waveguide theory; Mathieu functions; analytical closed form algebraic expression; circular dielectric waveguide; closed-form cutoff wavenumbers; elliptical dielectric waveguides; exact cutoff wavenumbers; optical fiber cladding; optical fiber core; Dielectrics; Equations; Europe; Mathematical model; Optical refraction; Optical variables control; Optical waveguides; Closed-form expressions; cutoff wavenumbers; elliptical dielectric waveguides; exact; hybrid modes;
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
DOI :
10.1109/TMTT.2012.2206401