Title :
Energy function-based approaches to graph coloring
Author :
Blas, Andrea Di ; Jagota, Arun ; Hughey, Richard
Author_Institution :
Dept. of Comput. Eng., California Univ., Santa Cruz, CA, USA
fDate :
1/1/2002 12:00:00 AM
Abstract :
We describe an approach to optimization based on a multiple-restart quasi-Hopfield network where the only problem-specific knowledge is embedded in the energy function that the algorithm tries to minimize. We apply this method to three different variants of the graph coloring problem: the minimum coloring problem, the spanning subgraph k-coloring problem, and the induced subgraph k-coloring problem. Though Hopfield networks have been applied in the past to the minimum coloring problem, our encoding is more natural and compact than almost all previous ones. In particular, we use k-state neurons while almost all previous approaches use binary neurons. This reduces the number of connections in the network from (Nk)2 to N2 asymptotically and also circumvents a problem in earlier approaches, that of multiple colors being assigned to a single vertex. Experimental results show that our approach compares favorably with other algorithms, even nonneural ones specifically developed for the graph coloring problem
Keywords :
Hopfield neural nets; graph colouring; optimisation; Hopfield neural networks; energy minimization; graph coloring; k-state neurons; multiple-restart; optimization; quasi-Hopfield network; simulated annealing; Clustering algorithms; Concurrent computing; Frequency; Heuristic algorithms; Hopfield neural networks; Neural networks; Neurons; Optimization methods; Registers; Simulated annealing;
Journal_Title :
Neural Networks, IEEE Transactions on