• DocumentCode
    15636
  • Title

    The Concavity of Rényi Entropy Power

  • Author

    Savare, Giuseppe ; Toscani, Giuseppe

  • Author_Institution
    Dept. of Math., Univ. of Pavia, Pavia, Italy
  • Volume
    60
  • Issue
    5
  • fYear
    2014
  • fDate
    May-14
  • Firstpage
    2687
  • Lastpage
    2693
  • Abstract
    We associate to the pth Rényi entropy a definition of entropy power, which is the natural extension of Shannon´s entropy power and exhibits a nice behavior along solutions to the p-nonlinear heat equation in Rn. We show that the Rényi entropy power of general probability densities solving such equations is always a concave function of time, whereas it has a linear behavior in correspondence to the Barenblatt source-type solutions. This result extends Costa´s concavity inequality for Shannon´s entropy power to Rényi entropies.
  • Keywords
    entropy; probability; Barenblatt source-type solutions; Costa concavity inequality; Rényi entropy power; Shannon entropy power; concave function; p-nonlinear heat equation; probability densities; Entropy; Equations; Indexes; Mathematical model; Plasmas; Space heating; Entropy; R??nyi entropy; information measure; information theory; nonlinear heat equation;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2309341
  • Filename
    6754151