DocumentCode :
1565813
Title :
Genetic algorithms for maximum likelihood parameter estimation
Author :
Sharman, K. ; McClurkin, G.D.
Author_Institution :
Dept. of Electron. & Electr. Eng., Strathclyde Univ., Glasgow, UK
fYear :
1989
Firstpage :
2716
Abstract :
The authors introduce genetic algorithms (GAs) to solve the exact maximum-likelihood equations arising in a typical signal processing problem. GAs are an efficient and highly parallel way of maximizing complex, multimodal, multivariable functions. They are based on concepts borrowed from natural genetic evolution, involving reproduction, crossover, and mutation of a continuously evolving population of parameter estimates. An outline is presented of a GA for maximizing a Gaussian likelihood function, and it is shown that it can outperform existing high-performance parameter estimation algorithms under difficult conditions
Keywords :
parameter estimation; signal processing; Gaussian likelihood function; crossover; genetic algorithms; maximum likelihood parameter estimation; mutation; reproduction; signal processing; Genetic algorithms; Maximum likelihood estimation; Nonlinear equations; Parameter estimation; Phased arrays; Random processes; Sensor arrays; Sensor phenomena and characterization; Signal processing; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on
Conference_Location :
Glasgow
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.1989.267029
Filename :
267029
Link To Document :
بازگشت