DocumentCode :
1572016
Title :
Soft primitive extraction on handwritten digits
Author :
Boujemaa, N. ; Roux, G. ; De Beauville, J. P Asselin ; Vattolo, B.
Author_Institution :
Lab. d´´Inf., Ecole d´´Ingenieurs en Inf. pour l´´Ind., Tours, France
Volume :
3
fYear :
1997
Firstpage :
296
Abstract :
Recognition of handwritten digits is useful for several applications such as automatic bank cheques interpretation. Many problems occur, making this task quite difficult: digits may overlap, the removal of a base line may damage the digits, and noise quantization pixels may alter the digits shape and meaning, etc. Uncertainty modeling becomes essential to our work. This paper shows how robust fuzzy clustering techniques are suitable and useful for soft feature extraction and representation of a cheque´s numerical value
Keywords :
bank data processing; curve fitting; feature extraction; fuzzy systems; handwriting recognition; image representation; image segmentation; automatic bank cheques interpretation; curve fitting; digits meaning; digits shape; handwritten digits recognition; noise quantization pixels; numerical value; robust fuzzy clustering techniques; segmentation; soft feature extraction; soft feature representation; soft primitive extraction; uncertainty modeling; Automatic frequency control; Change detection algorithms; Clustering algorithms; Equations; Euclidean distance; Feature extraction; Multi-stage noise shaping; Noise robustness; Prototypes; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1997. Proceedings., International Conference on
Conference_Location :
Santa Barbara, CA
Print_ISBN :
0-8186-8183-7
Type :
conf
DOI :
10.1109/ICIP.1997.632096
Filename :
632096
Link To Document :
بازگشت