DocumentCode :
1572723
Title :
Pollutant concentrations and Meteorological data classification by Neural Networks
Author :
Vega-Corona, A. ; Barrón-Adame, J.M. ; Ibarra-Manzano, O.G. ; Cortina-Januchs, M.G. ; Quintanilla-Dominguez, J. ; Andina, D.
Author_Institution :
División de Ingenierías, Universidad de Guanajuato, Salamanca, México
fYear :
2012
Firstpage :
1
Lastpage :
5
Abstract :
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World Automation Congress (WAC), 2012
Conference_Location :
Puerto Vallarta, Mexico
ISSN :
2154-4824
Print_ISBN :
978-1-4673-4497-5
Type :
conf
Filename :
6320996
Link To Document :
بازگشت