DocumentCode :
1573942
Title :
Using Gene Ontology to Generate Biological Contexts for Augmenting Statistical Patterns of Molecular Data
Author :
alSafadi, Y. ; Janevski, A. ; Simpson, Michael ; Banerjee, Nabaneeta ; Schaffer, D.
Author_Institution :
Philips Res., Briarcliff Manor, NY
fYear :
2008
Firstpage :
1
Lastpage :
2
Abstract :
This paper describes the research to reduce high false positive discovery rates when discovering possible molecular diagnostic patterns. This effort combines information from the gene ontology with multiple sets of discriminating patterns discovered in a publicly available gene expression dataset on breast cancer. Using a second validation dataset, we identify candidate patterns with good and poor validation performance, and then show that certain biological contexts appear to provide some ability to discriminate between them.
Keywords :
biology computing; genetics; molecular biophysics; ontologies (artificial intelligence); statistical analysis; breast cancer; gene ontology; molecular diagnostic pattern; statistical analysis; Bioinformatics; Breast cancer; Diseases; Gene expression; Information systems; Mass spectroscopy; Medical diagnosis; Noise measurement; Ontologies; Proteomics; Bioinformatics; Gene Ontology; Microarray; Molecular Diagnosis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on
Conference_Location :
Damascus
Print_ISBN :
978-1-4244-1751-3
Electronic_ISBN :
978-1-4244-1752-0
Type :
conf
DOI :
10.1109/ICTTA.2008.4529935
Filename :
4529935
Link To Document :
بازگشت