DocumentCode :
158042
Title :
Smart honeycomb tile for small satellites
Author :
Mughal, Muhammad Rizwan ; Ali, Ahmad ; Ali, Hamza ; Reyneri, Leonardo M.
Author_Institution :
Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy
fYear :
2014
fDate :
1-8 March 2014
Firstpage :
1
Lastpage :
8
Abstract :
Traditional satellite technologies integrate solar panels, thermo mechanical subsystems, power management, data processing and harness subsystems together in a late stage of design. More recently this approach has become inefficient and its limitation can easily be overcome with modern manufacturing technologies. This paper proposes an innovative approach to embed power, signal processing and harness together with thermo mechanical subsystem(s) and when required, solar panels. The approach has been developed for the AraMiS architecture for low-cost modular satellites, but it can easily be adapted to other architectures, missions and spacecraft sizes. The architecture consists of tiles or panel bodies containing solar panels on exterior side and all necessary electronic subsystems on the interior side. The proposed approach uses very thin commercial PCBs (0.2 or 0.3mm thick) as the lateral skins for honeycomb structure. The interior side also contains commercial tile processors and plug & play connectors for any desired subsystem placement. The processors implement common functionalities for signal processing, data communication and control operation. The interior side can also host power conversion, for an improved fault-tolerant interface of solar panels with the power management subsystem. A high-performance power distribution bus has also been tested, for a distributed approach to satellite power management. The proposed design uses exclusively the UML diagrams for illustration purpose and software handling of housekeeping data.
Keywords :
Unified Modeling Language; artificial satellites; fault tolerant computing; honeycomb structures; AraMiS architecture; PCB; UML diagrams; data communication; high-performance power distribution bus; improved fault-tolerant interface; satellite power management subsystem; signal processing; small satellites; smart honeycomb tile; solar panels; Batteries; Circuit faults; Regulators; Switches; Telecommunications; Tiles; Unified modeling language;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Aerospace Conference, 2014 IEEE
Conference_Location :
Big Sky, MT
Print_ISBN :
978-1-4799-5582-4
Type :
conf
DOI :
10.1109/AERO.2014.6836187
Filename :
6836187
Link To Document :
بازگشت