Title :
Complex analytic study of Daubechies localization operators
Author_Institution :
Tokyo City Univ., Tokyo, Japan
Abstract :
We will consider the inverse problem of eigenvalues of Daubechies localization operator. We will introduce analytic continuation of eigenvalues of Daubechies operator and generating function (Z-transform) of eigenvalues of Daubechies localization operator. Especially, we will clarify the relationship between analytic continuation of eigenvalues of Daubechies localization operator and Z-transform of eigenvalues of Daubechies localization operator.. By making use of inverse Laplace transform and inverse Mellin transform, we will show reconstruction formulas for symbol function of Daubechies localization operator with rotational invariant symbol. In final section we will calculate the trace of Daubechies localization operator.
Keywords :
Laplace transforms; eigenvalues and eigenfunctions; inverse problems; Daubechies localization operators; Z-transform; analytic continuation; eigenvalues; inverse Laplace transform; inverse Mellin transform; inverse problem; Convergence; Eigenvalues and eigenfunctions; Fourier transforms; Laplace equations; Marine vehicles; Taylor series;
Conference_Titel :
Communications and Information Technologies (ISCIT), 2010 International Symposium on
Conference_Location :
Tokyo
Print_ISBN :
978-1-4244-7007-5
Electronic_ISBN :
978-1-4244-7009-9
DOI :
10.1109/ISCIT.2010.5665077