DocumentCode :
1589316
Title :
Segmentation and compression of SAR imagery via hierarchical stochastic modeling
Author :
Kim, Andrew J. ; Krim, Hamid ; Willsky, Alan S.
Author_Institution :
Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA
Volume :
3
fYear :
1997
Firstpage :
488
Abstract :
To abate the enormous costs incurred in the transmission and storage of SAR data, we present a segmentation driven compression technique using hierarchical stochastic modeling within a multiscale framework. Our approach to SAR image compression is unique in that we exploit the multiscale stochastic structure inherent in SAR imagery. This structure is well captured by a set of scale auto-regressive models that accurately characterize the evolution in scale. We thus use the local evolution in scale of SAR imagery to generate a segmentation map which is then used in tandem with the corresponding models to provide a robust, hierarchical compression technique
Keywords :
autoregressive processes; data compression; image coding; image resolution; image segmentation; radar imaging; synthetic aperture radar; SAR imagery; data storage; data transmission; hierarchical compression; hierarchical stochastic modeling; image compression; local evolution; multiresolution images; multiscale stochastic structure; scale auto-regressive models; segmentation driven compression technique; segmentation map; Costs; Image coding; Image resolution; Image segmentation; Laboratories; Object detection; Radar polarimetry; Robustness; Stochastic processes; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1997. Proceedings., International Conference on
Conference_Location :
Santa Barbara, CA
Print_ISBN :
0-8186-8183-7
Type :
conf
DOI :
10.1109/ICIP.1997.632164
Filename :
632164
Link To Document :
بازگشت