DocumentCode :
1591791
Title :
A New Optimization Method for Resource Leveling
Author :
Tian, WenJie ; Liu, JiCheng
Author_Institution :
Autom. Inst., Beijing Union Univ., Beijing, China
Volume :
2
fYear :
2010
Firstpage :
175
Lastpage :
178
Abstract :
An improved adaptive immune clone selection algorithm (ICSA) is proposed, which is a new heuristic intelligent optimization algorithm. We apply the method in the resource leveling; the properties are discussed and analyzed. The experimental results show that proposed methods have better performances such as good and fast global convergence, strong robustness, insensitive to initial values, simplicity of implementation.
Keywords :
artificial immune systems; convergence; adaptive immune clone selection algorithm; global convergence; heuristic intelligent optimization algorithm; implementation simplicity; initial values insensitivity; optimization method; resource leveling; Automation; Bones; Cloning; Convergence; Data structures; Genetic mutations; Immune system; Optimization methods; Particle swarm optimization; Signal processing algorithms; antibody; global convergence; immune clone selection algorithm; mutation; resource leveling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Modeling and Simulation, 2010. ICCMS '10. Second International Conference on
Conference_Location :
Sanya, Hainan
Print_ISBN :
978-1-4244-5642-0
Electronic_ISBN :
978-1-4244-5643-7
Type :
conf
DOI :
10.1109/ICCMS.2010.220
Filename :
5421102
Link To Document :
بازگشت