Abstract :
We consider markets in the classical Arrow-Debreu model. There are n agents and m goods. Each buyer has a concave utility function (of the bundle of goods he/she buys) and an initial bundle. At an ldquoequilibriumrdquo set of prices for goods, if each individual buyer separately ex-changes the initial bundle for an optimal bundle at the set prices, the market clears, i.e., all goods are exactly consumed. Classical theorems guarantee the existence of equilibria, but computing them has been the subject of much recent research. In the related area of Multi-Agent Games,much attention has been paid to the complexity as well as algorithms. While most general problems are hard, polynomial time algorithms have been developed for restricted classes of games, when one assumes the number of strategies is constant.For the Market Equilibrium problem, several important special cases of utility functions have been tackled. Here we begin a program for this problem similar to that for multi-agent games, where general utilities are considered. We begin by showing that if the utilities are separable piece-wise linear concave (PLC) functions, and the number of goods(or alternatively the number of buyers) is constant, then we can compute an exact equilibrium in polynomial time.Our technique for the constant number of goods is to de-compose the space of price vectors into cells using certain hyperplanes, so that in each cell, each buyerpsilas threshold marginal utility is known. Still, one needs to solve a linear optimization problem in each cell. We then show the main result - that for general (non-separable) PLC utilities, an exact equilibrium can be found in polynomial time provided the number of goods is constant. The starting point of the algorithm is a ldquocell-decompositionrdquo of the space of price vectors using polynomial surfaces (instead of hyperplanes).We use results from computational algebraic geometry to bound the number of such cells. For solving the problem inside each- - cell, we introduce and use a novel LP-duality based method. We note that if the number of buyers and agents both can vary, the problem is PPAD hard even for the very special case of PLC utilities - namely Leontief utilities.
Keywords :
computational geometry; industrial economics; optimisation; piecewise linear techniques; polynomials; pricing; utility programs; Arrow-Debreu model; LP-duality; Leontief utilities; agents; computational algebraic geometry; concave utility function; goods; market equilibria; multiagent games; optimization; piecewise linear concave functions; polynomial time; Computational complexity; Computational geometry; Computer science; Game theory; Mathematical model; Piecewise linear techniques; Polynomials; Programmable control; Vectors; algorithm; economics; equilibrium; exact; market;