DocumentCode :
1595725
Title :
Modified Evolution Strategy Based Identification of Multi-input Single-Output Wiener-Hammerstein Model
Author :
Ke, Jing ; Zhang, Chengjin ; Qiao, Yizheng
Author_Institution :
Shandong Univ., Jinan
Volume :
4
fYear :
2007
Firstpage :
251
Lastpage :
255
Abstract :
Evolution strategies are a class of evolutionary algorithms with self-adaptation. A new method for identification of multi-input single-output (MISO) Wiener-Hammerstein model using evolution strategy is proposed. By using the least absolute residuals criterion, the identification scheme is cast as a complex nondifferentiable function optimization problem over parameter space. In order to find the optimal estimation of the system parameters, a modified evolution strategy is proposed to optimize the objective function. Simulation results show that the proposed method is a simple and effective non-recursive identification method, particularly for small samples.
Keywords :
evolutionary computation; identification; complex nondifferentiable function optimization problem; evolutionary algorithm; least absolute residual criterion; multi input single-output Wiener-Hammerstein model identification; optimal estimation; Bismuth; Delay effects; Electronic switching systems; Evolutionary computation; Least squares methods; Noise measurement; Nonlinear systems; Parametric statistics; Scattering; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2007. ICNC 2007. Third International Conference on
Conference_Location :
Haikou
Print_ISBN :
978-0-7695-2875-5
Type :
conf
DOI :
10.1109/ICNC.2007.481
Filename :
4344680
Link To Document :
بازگشت