DocumentCode :
1596162
Title :
Linear fuzzy cluster extraction from non-euclidean relational data
Author :
Honda, Katsuhiro ; Yamamoto, Takeshi ; Haga, Naoki ; Notsu, Akira ; Ichihashi, Hidetomo
Author_Institution :
Grad. Sch. of Eng., Osaka Prefecture Univ., Sakai, Japan
fYear :
2010
Firstpage :
1
Lastpage :
6
Abstract :
How to handle relational data is an active topic in fuzzy clustering. This paper proposes an extended version of linear fuzzy clustering based on Fuzzy c-Medoids (FCMdd), which is used with Non-Euclidean relational data. In order to estimate the clustering criterion of distances between objects and linear prototypes using mutual non-Euclidean distances, a modification used in NERF (non-Euclidean-type Fuzzy c-Means) is applied to the relational data before FCMdd-type linear cluster extraction. An experimental result demonstrates that we can find a suitable set of medoids, which are used for spanning prototypical lines, even when the relational measure is not Euclidean.
Keywords :
fuzzy set theory; pattern clustering; FCMdd-type linear cluster extraction; fuzzy c-Medoids; linear fuzzy cluster extraction; linear fuzzy clustering; nonEuclidean relational data; nonEuclidean-type fuzzy c-means; Clustering algorithms; Data mining; Eigenvalues and eigenfunctions; Euclidean distance; Principal component analysis; Prototypes; Vectors; Fuzzy clustering; principal component analysis; relational data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World Automation Congress (WAC), 2010
Conference_Location :
Kobe
ISSN :
2154-4824
Print_ISBN :
978-1-4244-9673-0
Electronic_ISBN :
2154-4824
Type :
conf
Filename :
5665673
Link To Document :
بازگشت