• DocumentCode
    1597429
  • Title

    Quantum Approximation Error on Some Sobolev Classes

  • Author

    Ye, Peixin

  • Author_Institution
    Nankai Univ., Tianjin
  • Volume
    4
  • fYear
    2007
  • Firstpage
    603
  • Lastpage
    607
  • Abstract
    We study the approximation of functions from anisotropic and generalized Sobolev classes under Lq([0, 1]d) norm in the quantum model of computation. Based on the quantum algorithm for approximation of finite imbedding from LN P to LiN Q, we develop a quantum algorithm for approximating the imbedding from anisotropic Sobolev classes B(Wp r(|0, 1|d)) to Lq(|0, 1|d) space for all 1 les q,p les infin and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup of roughly squaring the rate of classical deterministic and randomized settings.
  • Keywords
    approximation theory; quantum computing; anisotropic Sobolev classes; quantum algorithm; quantum approximation error; Anisotropic magnetoresistance; Approximation algorithms; Approximation error; Computational modeling; Mathematical model; Neodymium; Probability distribution; Quantum computing; Random variables;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation, 2007. ICNC 2007. Third International Conference on
  • Conference_Location
    Haikou
  • Print_ISBN
    978-0-7695-2875-5
  • Type

    conf

  • DOI
    10.1109/ICNC.2007.588
  • Filename
    4344745