DocumentCode :
1604486
Title :
Sensitivity analysis and parameter estimation of signal transduction pathways model
Author :
Jia, Jianfang ; Yue, Hong
Author_Institution :
Sch. of Inf. & Commun. Eng., North Univ. of China, Taiyuan, China
fYear :
2009
Firstpage :
1357
Lastpage :
1362
Abstract :
Due to the high nonlinearity in system models, the large number of kinetics parameters involved, the inadequate measurement data in experiments and the noise pollution, etc., parameter estimation is therefore a challenging problem in systems biology. In this work, sensitivity analysis of model output with respect to model parameters is evaluated using Latin hypercube sampling method. Then, a new objective function is proposed based on the probability density function (PDF) of the system output, and particle swarm optimization is used to optimize the objective function through particles´ cooperation and evolution. Taking NF-kappaB signal pathways model as an example, this method is applied to rank importance of parameters and to estimate the unknown sensitive parameters for complex signal transduction pathways model. The simulation results show the effectiveness of this new algorithm.
Keywords :
biology computing; parameter estimation; particle swarm optimisation; probability; sensitivity analysis; Latin hypercube sampling method; NF-kappaB signal pathways model; objective function; parameter estimation; particle swarm optimization; probability density function; sensitivity analysis; signal transduction pathways model; Biological system modeling; Hypercubes; Kinetic theory; Noise measurement; Parameter estimation; Pollution measurement; Probability density function; Sampling methods; Sensitivity analysis; Systems biology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Asian Control Conference, 2009. ASCC 2009. 7th
Conference_Location :
Hong Kong
Print_ISBN :
978-89-956056-2-2
Electronic_ISBN :
978-89-956056-9-1
Type :
conf
Filename :
5276315
Link To Document :
بازگشت