DocumentCode
1606830
Title
Multiobjective genetic estimation of DC motor parameters and load torque
Author
Dupuis, Adrien ; Ghribi, Mohsen ; Kaddouri, Azeddine
Author_Institution
Fac. of Eng., Moncton Univ., NB, Canada
Volume
3
fYear
2004
Firstpage
1511
Abstract
In order to simplify the offline identification of motor parameters, a new method based on optimization using a multiobjective elitist genetic algorithm is proposed. The non-dominated sorting genetic algorithm (NSGA-II) is used to minimize the error between the current and velocity responses of data and an estimated model. The robustness of the method is shown by estimating parameters of a DC motor in four different cases. Simulation results show that the method successfully estimates the motor parameters and is also capable of identifying a load torque simultaneously.
Keywords
DC motors; genetic algorithms; parameter estimation; stability; DC motor parameters identification; error minimization; load torque; multiobjective elitist genetic algorithm; multiobjective genetic estimation; nondominated sorting genetic algorithm; optimization; parameters estimation; Angular velocity; DC motors; Design optimization; Genetic algorithms; Optimization methods; Parameter estimation; Robustness; Sorting; Torque; Voltage;
fLanguage
English
Publisher
ieee
Conference_Titel
Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on
Print_ISBN
0-7803-8662-0
Type
conf
DOI
10.1109/ICIT.2004.1490788
Filename
1490788
Link To Document