DocumentCode :
1606830
Title :
Multiobjective genetic estimation of DC motor parameters and load torque
Author :
Dupuis, Adrien ; Ghribi, Mohsen ; Kaddouri, Azeddine
Author_Institution :
Fac. of Eng., Moncton Univ., NB, Canada
Volume :
3
fYear :
2004
Firstpage :
1511
Abstract :
In order to simplify the offline identification of motor parameters, a new method based on optimization using a multiobjective elitist genetic algorithm is proposed. The non-dominated sorting genetic algorithm (NSGA-II) is used to minimize the error between the current and velocity responses of data and an estimated model. The robustness of the method is shown by estimating parameters of a DC motor in four different cases. Simulation results show that the method successfully estimates the motor parameters and is also capable of identifying a load torque simultaneously.
Keywords :
DC motors; genetic algorithms; parameter estimation; stability; DC motor parameters identification; error minimization; load torque; multiobjective elitist genetic algorithm; multiobjective genetic estimation; nondominated sorting genetic algorithm; optimization; parameters estimation; Angular velocity; DC motors; Design optimization; Genetic algorithms; Optimization methods; Parameter estimation; Robustness; Sorting; Torque; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on
Print_ISBN :
0-7803-8662-0
Type :
conf
DOI :
10.1109/ICIT.2004.1490788
Filename :
1490788
Link To Document :
بازگشت