• DocumentCode
    1606830
  • Title

    Multiobjective genetic estimation of DC motor parameters and load torque

  • Author

    Dupuis, Adrien ; Ghribi, Mohsen ; Kaddouri, Azeddine

  • Author_Institution
    Fac. of Eng., Moncton Univ., NB, Canada
  • Volume
    3
  • fYear
    2004
  • Firstpage
    1511
  • Abstract
    In order to simplify the offline identification of motor parameters, a new method based on optimization using a multiobjective elitist genetic algorithm is proposed. The non-dominated sorting genetic algorithm (NSGA-II) is used to minimize the error between the current and velocity responses of data and an estimated model. The robustness of the method is shown by estimating parameters of a DC motor in four different cases. Simulation results show that the method successfully estimates the motor parameters and is also capable of identifying a load torque simultaneously.
  • Keywords
    DC motors; genetic algorithms; parameter estimation; stability; DC motor parameters identification; error minimization; load torque; multiobjective elitist genetic algorithm; multiobjective genetic estimation; nondominated sorting genetic algorithm; optimization; parameters estimation; Angular velocity; DC motors; Design optimization; Genetic algorithms; Optimization methods; Parameter estimation; Robustness; Sorting; Torque; Voltage;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on
  • Print_ISBN
    0-7803-8662-0
  • Type

    conf

  • DOI
    10.1109/ICIT.2004.1490788
  • Filename
    1490788