DocumentCode :
1607759
Title :
Locally optimal maximum-likelihood completion of a partially specified Toeplitz covariance matrix
Author :
Abramovich, Yuri I. ; Spencer, N.K.
Author_Institution :
Surveillance Res. Lab., Defence Sci. & Technol. Organ., Salisbury, SA, Australia
fYear :
2001
fDate :
6/23/1905 12:00:00 AM
Firstpage :
229
Lastpage :
232
Abstract :
The problem of maximum-likelihood (ML) completion of a partially specified Toeplitz covariance matrix is crucial in several applications, such as the detection and estimation of more independent Gaussian sources than sensors (m>M) in minimum-redundancy sparse linear antenna arrays. Given the sufficient statistic in the form of the M-variate direct data covariance matrix Rˆ, we describe an algorithm that finds a positive-definite completed Mα-variate Toeplitz matrix (Mα≫M) with (locally) maximal likelihood ratio (LR). Simulations demonstrate that a statistically high LR is achieved, compared with L2 optimisation
Keywords :
Toeplitz matrices; array signal processing; covariance matrices; linear antenna arrays; maximum likelihood detection; maximum likelihood estimation; parameter estimation; signal detection; statistical analysis; Gaussian sources; locally optimal maximum-likelihood completion; minimum-redundancy sparse linear antenna arrays; nonuniform linear array; partially specified Toeplitz covariance matrix; signal detection; signal estimation; sufficient statistic; Australia; Covariance matrix; Linear antenna arrays; Maximum likelihood detection; Maximum likelihood estimation; Sensor arrays; Sensor systems; Signal processing; Sparse matrices; Surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2001. Proceedings of the 11th IEEE Signal Processing Workshop on
Print_ISBN :
0-7803-7011-2
Type :
conf
DOI :
10.1109/SSP.2001.955264
Filename :
955264
Link To Document :
بازگشت