DocumentCode :
1609688
Title :
Spectral Feature Selection with Particle Swarm Optimization for Hyperspectral Classification
Author :
Li, Jun ; Ding, Sheng
Author_Institution :
Coll. of Comput. Sci. & Technol., Wuhan Univ. of Sci. & Technol., Wuhan, China
fYear :
2012
Firstpage :
414
Lastpage :
418
Abstract :
Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. We propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. The proposed PSO-SVM algorithm is performed to select the best discriminant features and appropriate SVM parameters for hyperspectral remote sensing imagery simultaneously.
Keywords :
feature extraction; geophysical image processing; image classification; particle swarm optimisation; remote sensing; support vector machines; PS-SVM algorithm; SVM classifier; SVM parameter optimization; discriminant features; hyperspectral classification; hyperspectral remote sensing image; hyperspectral remote sensing imagery; particle swarm optimization; spectral band selection; spectral feature selection; Industrial control; Feature Selection; Optimization; Particle Swarm Optimization( PSO); support vector machine(SVM);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Control and Electronics Engineering (ICICEE), 2012 International Conference on
Conference_Location :
Xi´an
Print_ISBN :
978-1-4673-1450-3
Type :
conf
DOI :
10.1109/ICICEE.2012.116
Filename :
6322405
Link To Document :
بازگشت