DocumentCode :
1615061
Title :
A neural network approach to least squares estimation
Author :
Adamczyk, B. ; Zohdy, M.A. ; Abdel-Aty Zohdy, H.S.
Author_Institution :
Center for Robotics & Adv. Autom., Oakland Univ., Rochester, MI, USA
fYear :
1992
Firstpage :
1218
Abstract :
The authors present a new neural network approach to the problem of least squares parameter estimation and identification in engineering applications. First, they define the fundamental estimation problems, which is reformulated into a form suitable for a neural network realization. After introducing the interconnected neural network architecture, the required inputs and the values of the connectivities among the processing elements are derived. A numerical example is presented to illustrate the detrimental effects of inevitable parameter variations and noise
Keywords :
least squares approximations; neural nets; parameter estimation; connectivities; interconnected neural network architecture; least squares estimation; neural network approach; noise effects; parameter estimation; parameter identification; Computer networks; Equations; Least squares approximation; Neural networks; Noise generators; Noise measurement; Parameter estimation; Robotics and automation; Stochastic processes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1992., Proceedings of the 35th Midwest Symposium on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-0510-8
Type :
conf
DOI :
10.1109/MWSCAS.1992.271052
Filename :
271052
Link To Document :
بازگشت