• DocumentCode
    1615902
  • Title

    Global asymptotic stability of a class of nonlinear dynamical systems

  • Author

    Xiong, Kaiqi

  • Author_Institution
    Center for Res. in Sci. Corp., North Carolina State Univ., Raleigh, NC, USA
  • Volume
    3
  • fYear
    1998
  • Firstpage
    456
  • Abstract
    In this paper we systematically study the global asymptotic stability of a class of nonlinear dynamical systems based on the Liapunov function method. We obtain necessary and sufficient conditions (NASCs) for the existence of a Liapunov function of Lurie type with negative semi-definite derivative. We improve the Moore-Anderson theorem and the Popov frequency criterion in this field. An illustrative example is provided
  • Keywords
    Lyapunov methods; Popov criterion; asymptotic stability; feedback; nonlinear control systems; nonlinear dynamical systems; Liapunov function method; Lurie type; Moore-Anderson theorem; Popov frequency criterion; global asymptotic stability; negative semi-definite derivative; nonlinear dynamical systems; Aerospace control; Aircraft manufacture; Asymptotic stability; Automotive engineering; Circuit stability; Control theory; Feedback control; Nonlinear dynamical systems; Power system modeling; Power system stability;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on
  • Conference_Location
    Monterey, CA
  • Print_ISBN
    0-7803-4455-3
  • Type

    conf

  • DOI
    10.1109/ISCAS.1998.704048
  • Filename
    704048