Title :
On the problem of granulometry for a degraded Boolean image model
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Abstract :
We consider a geometric coverage process consisting of a random number of disks, or grains, having random radii and positions in the plane. Our objective is granulometry: estimation of a parameter of the disk radius distribution, which is important in diverse applications such bio-assay, ballistics, and numerical taxonomy. These disks are only incompletely observed due to mutual occlusion, spatial blurring and additive noise. We use a measurement channel paradigm to derive an expectation-maximization (EM) type estimation algorithm and a distortion-rate lower bound on estimation error.
Keywords :
Boolean algebra; image processing; motion estimation; parameter estimation; additive noise; degraded Boolean image model; disk radius distribution; estimation error; expectation-maximization type estimation algorithm; geometric coverage process; granulometry; measurement channel paradigm; mutual occlusion; numerical taxonomy; parameter estimation; random radii; spatial blurring; Additive noise; Computer science; Degradation; Distortion measurement; Estimation error; Gaussian noise; Parameter estimation; Silver; Solid modeling; Taxonomy;
Conference_Titel :
Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on
Conference_Location :
Kobe
Print_ISBN :
0-7803-5467-2
DOI :
10.1109/ICIP.1999.822846