DocumentCode :
1620969
Title :
Parameter Estimation of Ventricular Myocardial Cell Model Using an On-Line Learning Algorithm
Author :
Takahashi, Naoyuki ; DOI, Shinji ; Kumagai, Sadatoshi
Author_Institution :
Div. of Electr., Electron. & Inf. Eng., Osaka Univ.
fYear :
2006
Firstpage :
2322
Lastpage :
2327
Abstract :
The Luo-Rudy dynamic (LRd) model is the one of typical models of ventricular myocardial cell and described by Hodgkin-Huxley-type nonlinear ordinary differential equations. By changing various parameters of the LRd model, we can reproduce heart conditions, which trigger heart diseases such as arrhythmia. It is, however, very difficult to understand the relation between the parameters in the LRd model and a heart cell´s behavior (action potential) because the LRd model has high complexity and nonlinearity. We demonstrate to estimate the parameters in the LRd model easily and automatically with a learning algorithm. Thus we show that the automatic parameter estimation is very useful to identify the cause of heart diseases in clinical applications
Keywords :
bioelectric potentials; biomembrane transport; cardiology; diseases; gradient methods; nonlinear differential equations; parameter estimation; physiological models; Hodgkin-Huxley-type nonlinear ordinary differential equations; Luo-Rudy dynamic model; action potential; automatic parameter estimation; gradient-descent learning; heart arrhythmia; heart cell behavior; heart diseases; ionic channel disease; on-line learning algorithm; ventricular myocardial cell model; Biomembranes; Cardiac disease; Cardiovascular diseases; Cells (biology); Differential equations; Electronic mail; Heart; Myocardium; Nonlinear equations; Parameter estimation; gradient-descent learning; heart arrhythmia; ionic channel disease; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
SICE-ICASE, 2006. International Joint Conference
Conference_Location :
Busan
Print_ISBN :
89-950038-4-7
Electronic_ISBN :
89-950038-5-5
Type :
conf
DOI :
10.1109/SICE.2006.315495
Filename :
4109077
Link To Document :
بازگشت