Title :
Error estimate of the Fourier-Bessel expansion in computation of field distributions
Author_Institution :
Dept. of Electr. Eng., Ottawa Univ., Ont., Canada
Abstract :
Formulation, solution, and numerical results are presented for the error estimation of the Fourier-Bessel expansion in the computation of field distribution in coaxial regions. It is shown that there exists an optimal number of terms of the expansion which gives the minimum mean square error. This optimal number of terms is a function of the eigenvalue uncertainties.<>
Keywords :
Bessel functions; Fourier transforms; electromagnetic field theory; error analysis; Fourier-Bessel expansion; coaxial regions; eigenvalue uncertainties; error estimation; field distributions; minimum mean square error; Boundary conditions; Boundary value problems; Coaxial cables; Coaxial components; Distributed computing; Eigenvalues and eigenfunctions; Equations; Kernel; Problem-solving; Region 5;
Conference_Titel :
Antennas and Propagation Society International Symposium, 1989. AP-S. Digest
Conference_Location :
San Jose, CA, USA
DOI :
10.1109/APS.1989.134600