DocumentCode :
1629263
Title :
Facial asymmetry quantification for expression invariant human identification
Author :
Liu, Y. ; Schmidt, K.L. ; Cohn, J.F. ; Weaver, R.L.
Author_Institution :
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2002
Firstpage :
198
Lastpage :
204
Abstract :
We investigate the effect of quantified statistical facial asymmetry as a biometric under expression variations. Our findings show that the facial asymmetry measures (AsymFaces) are computationally feasible, containing discriminative information and providing synergy when combined with Fisherface and Eigen-face methods on image data of two publically available face databases (Cohn-Kanade (T. Kanade et al., 1999) and Feret (P.J. Phillips et al., 1998))
Keywords :
biometrics (access control); face recognition; visual databases; AsymFaces; Cohn-Kanade; Eigen-face methods; Feret; Fisherface methods; biometric; discriminative information; expression invariant human identification; expression variations; facial asymmetry measures; facial asymmetry quantification; image data; publicly available face databases; quantified statistical facial asymmetry; Face recognition; Humans;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on
Conference_Location :
Washington, DC
Print_ISBN :
0-7695-1602-5
Type :
conf
DOI :
10.1109/AFGR.2002.1004156
Filename :
1004156
Link To Document :
بازگشت