DocumentCode :
1631610
Title :
Cluster validation in linear fuzzy clustering of relational data from multi-cluster principal coordinate analysis view point
Author :
Haga, Naoki ; Honda, Katsuhiro ; Notsu, Akira ; Ichihashi, Hidetomo
Author_Institution :
Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
fYear :
2009
Firstpage :
1131
Lastpage :
1136
Abstract :
This paper considers a new approach to cluster validation in linear fuzzy clustering of relational data. Considering the close connection between linear fuzzy clustering and local PCA, the relational clustering model can be regarded as a multi-cluster MDS model. In the new cluster validation approach, the quality of fuzzy partitions is measured from the multi-cluster principal coordinate analysis view point, in which the reconstructed low dimensional substructure in each cluster is compared with the result of principal coordinate analysis considering fuzzy membership degrees to the cluster.
Keywords :
fuzzy set theory; pattern clustering; principal component analysis; cluster validation approach; fuzzy membership degree; linear fuzzy clustering; local PCA; multicluster MDS model; multicluster principal coordinate analysis view point; multidimensional scaling; relational data clustering model; Clustering algorithms; Clustering methods; Coordinate measuring machines; Covariance matrix; Linearity; Matrix decomposition; Principal component analysis; Prototypes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on
Conference_Location :
Jeju Island
ISSN :
1098-7584
Print_ISBN :
978-1-4244-3596-8
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2009.5277418
Filename :
5277418
Link To Document :
بازگشت