DocumentCode :
1632563
Title :
Online tracking parameter adaptation based on evaluation
Author :
Duc Phu Chau ; Badie, Julien ; Bremond, Francois ; Thonnat, Monique
Author_Institution :
STARS Team, INRIA, Valbonne, France
fYear :
2013
Firstpage :
189
Lastpage :
194
Abstract :
Parameter tuning is a common issue for many tracking algorithms. In order to solve this problem, this paper proposes an online parameter tuning to adapt a tracking algorithm to various scene contexts. In an offline training phase, this approach learns how to tune the tracker parameters to cope with different contexts. In the online control phase, once the tracking quality is evaluated as not good enough, the proposed approach computes the current context and tunes the tracking parameters using the learned values. The experimental results show that the proposed approach improves the performance of the tracking algorithm and outperforms recent state of the art trackers. This paper brings two contributions: (1) an online tracking evaluation, and (2) a method to adapt online tracking parameters to scene contexts.
Keywords :
learning (artificial intelligence); object tracking; offline training phase; online control phase; online parameter tuning; online tracking parameter adaptation; online tracking parameters; tracker parameters; tracking algorithms; tracking quality; Context; Databases; Measurement; Mobile communication; Training; Trajectory; Tuning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International Conference on
Conference_Location :
Krakow
Type :
conf
DOI :
10.1109/AVSS.2013.6636638
Filename :
6636638
Link To Document :
بازگشت