Title :
A comparative study of different corner detection methods
Author :
Liu, JunJie ; Jakas, Anthony ; Al-Obaidi, Ala ; Liu, Yonghuai
Author_Institution :
Dept. of Comput. Sci., Aberystwyth Univ., Aberystwyth, UK
Abstract :
Interest points are widely used in computer vision applications such as camera calibration, robot localization and object tracking that require fast and efficient feature matching. A large number of techniques have been proposed in the literature. This paper evaluates the state of art techniques for interest point detection including execution time and suitability for real time applications. Such comparative study is crucial for specific applications, since it is always necessary to understand the advantages and disadvantages of the existing techniques so that best possible ones can be selected. The comparative study shows that: (1) the CSS method performs best in corner extraction. It is the fast and the most reliable and has the lowest noise sensitivity with the highest true corner detection rate, even though it still detects some false corners; (2) SUSAN detector would be the second choice and is acceptable and useful in applications requiring a computationally efficient detector and working on a restricted set of images.
Keywords :
computer vision; edge detection; image matching; real-time systems; CSS method; SUSAN detector; computer vision applications; corner detection methods; corner extraction; feature matching; interest point detection; noise sensitivity; real time applications; state of art techniques; true corner detection rate; Application software; Art; Calibration; Cameras; Cascading style sheets; Computer applications; Computer vision; Detectors; Robot localization; Robot vision systems;
Conference_Titel :
Computational Intelligence in Robotics and Automation (CIRA), 2009 IEEE International Symposium on
Conference_Location :
Daejeon
Print_ISBN :
978-1-4244-4808-1
Electronic_ISBN :
978-1-4244-4809-8
DOI :
10.1109/CIRA.2009.5423153