• DocumentCode
    1633900
  • Title

    The robustness design of templates of CNN for detecting inner corners of objects in gray-scale images

  • Author

    Ming, Lei ; Min, Lequan

  • Author_Institution
    Dept. of Math. & Mech., Beijing Univ. of Sci. & Technol., China
  • Volume
    2
  • fYear
    2004
  • Firstpage
    1090
  • Abstract
    The paper presents a theorem for designing the robustness template parameters of cellular neural/nonlinear network (CNN) for extracting inner corners of objects in gray-scale images. The theorem provides parameter inequalities for determining parameter intervals for implementing the corresponding tasks. The designed CNN has a linear A-template and a nonlinear B-template with two thresholds. A first numerical simulation example shows that the CNN designed via our method successfully detects the inner corners of objects in gray-scale images. A second one implies that the inner corner detection CNN may extract inner corners of objects in gray-scale images with Gaussian noise if suitable thresholds of the CNN are chosen.
  • Keywords
    cellular neural nets; feature extraction; image processing; stability; Gaussian noise; cellular neural network; cellular nonlinear network; gray-scale images; linear A-template; nonlinear B-template; object inner corner detection; object inner corner extraction; parameter inequalities; parameter intervals; robustness template design; Cellular neural networks; Gray-scale; Image edge detection; Image processing; Mathematics; Nearest neighbor searches; Neural networks; Object detection; Pixel; Robustness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on
  • Print_ISBN
    0-7803-8647-7
  • Type

    conf

  • DOI
    10.1109/ICCCAS.2004.1346366
  • Filename
    1346366