Title :
Bayesian Similarity Model Estimation for Approximate Recognized Text Search
Author :
Takasu, Atsuhiro
Author_Institution :
Nat. Inst. of Inf., Tokyo, Japan
Abstract :
Approximate text search is a basic technique to handle recognized text that contains recognition errors. This paper proposes an approximate string search for recognized texturing a statistical similarity model focusing on parameter estimation. The main contribution of this paper is to propose a parameter estimation algorithm using variational Bayesian expectation maximization technique. We applied the obtained model to approximate substring detection problem and experimentally showed that the Bayesian estimation is effective.
Keywords :
Bayes methods; expectation-maximisation algorithm; hidden Markov models; information retrieval; parameter estimation; pattern recognition; text analysis; variational techniques; Bayesian similarity model estimation; approximate recognized text search technique; approximate substring detection problem; parameter estimation algorithm; statistical similarity model; texture recognition; variational Bayesian expectation maximization technique; Bayesian methods; Costs; Hidden Markov models; Matrices; Matrix converters; Maximum likelihood estimation; Optical character recognition software; Parameter estimation; Software libraries; Text recognition; VBEM algorithm; approximate string search; statistical model;
Conference_Titel :
Document Analysis and Recognition, 2009. ICDAR '09. 10th International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-4500-4
Electronic_ISBN :
1520-5363
DOI :
10.1109/ICDAR.2009.193