DocumentCode :
1637087
Title :
Evolving modular genetic regulatory networks
Author :
Bongard, Josh
Author_Institution :
Artificial Intelligence Lab., Zurich Univ., Switzerland
Volume :
2
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
1872
Lastpage :
1877
Abstract :
We introduce a system that combines ontogenetic development and artificial evolution to automatically design robots in a physics-based, virtual environment. Through lesion experiments on the evolved agents, we demonstrate that the evolved genetic regulatory networks from successful evolutionary runs are more modular than those obtained from unsuccessful runs
Keywords :
genetic algorithms; neural nets; robots; artificial evolution; evolved agents; evolving modular genetic regulatory networks; experiments; neural network; ontogenetic development; physics-based virtual environment; robot design; Bioinformatics; Biological information theory; Encoding; Evolution (biology); Genetics; Genomics; Robots; Shape; Testing; Virtual environment;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7282-4
Type :
conf
DOI :
10.1109/CEC.2002.1004528
Filename :
1004528
Link To Document :
بازگشت