DocumentCode :
16395
Title :
A Novel Framework for Cellular Tracking and Mitosis Detection in Dense Phase Contrast Microscopy Images
Author :
Thirusittampalam, Ketheesan ; Hossain, Md Jahangir ; Ghita, Ovidiu ; Whelan, Paul F.
Author_Institution :
Center for Image Process. & Anal., Dublin City Univ., Dublin, Ireland
Volume :
17
Issue :
3
fYear :
2013
fDate :
May-13
Firstpage :
642
Lastpage :
653
Abstract :
The aim of this paper is to detail the development of a novel tracking framework that is able to extract the cell motility indicators and to determine the cellular division (mitosis) events in large time-lapse phase-contrast image sequences. To address the challenges induced by nonstructured (random) motion, cellular agglomeration, and cellular mitosis, the process of automatic (unsupervised) cell tracking is carried out in a sequential manner, where the interframe cell association is achieved by assessing the variation in the local cellular structures in consecutive frames of the image sequence. In our study, a strong emphasis has been placed on the robust use of the topological information in the cellular tracking process and in the development of targeted pattern recognition techniques that were designed to redress the problems caused by segmentation errors, and to precisely identify mitosis using a backward (reversed) tracking strategy. The proposed algorithm has been evaluated on dense phase-contrast cellular data and the experimental results indicate that the proposed algorithm is able to accurately track epithelial and endothelial cells in time-lapse image sequences that are characterized by low contrast and high level of noise. Our algorithm achieved 86.10% overall tracking accuracy and 90.12% mitosis detection accuracy.
Keywords :
biological techniques; cell motility; image recognition; image segmentation; image sequences; automatic unsupervised cell tracking; backward reversed tracking strategy; cell motility; cellular agglomeration; cellular division; cellular mitosis detection; cellular tracking; dense phase contrast microscopy image; dense phase-contrast cellular data; endothelial cells; epithelial cells; interframe cell association; local cellular structures; noise level; nonstructured random motion; segmentation errors; targeted pattern recognition; time-lapse phase-contrast image sequences; Algorithm design and analysis; Image segmentation; Image sequences; Indexes; Robustness; Tracking; Transforms; Cell tracking; Delaunay triangulation; cellular interaction; mitosis; time-lapse microscopy;
fLanguage :
English
Journal_Title :
Biomedical and Health Informatics, IEEE Journal of
Publisher :
ieee
ISSN :
2168-2194
Type :
jour
DOI :
10.1109/TITB.2012.2228663
Filename :
6415230
Link To Document :
بازگشت