Title :
Influence of fitness quantization noise on the performance of interactive PSO
Author :
Nakano, Yu. ; Takagi, Hideyuki
Author_Institution :
Grad. Sch. of Design, Kyushu Univ., Fukuoka
Abstract :
We analyze the influence of quantization noise in fitness values on the search performance of Particle Swarm Optimization (PSO) and propose methods for reducing the negative influence of the noise to help realize a practical Interactive PSO. First, we compare the convergences of PSO and genetic algorithms (GA) with several different levels of quantized fitness values and show that PSO has a higher sensitivity to quantization noise than GA. Second, we analyze the sensitivity of each of the three components that determine the subsequent generation´s PSO velocities and show that the sensitivities of the three components are almost equivalent. This implies that we need to develop methods for reducing the effect of quantization noise on all three components of the PSO velocity. As one of the solution, we propose a method using the average location of multiple global bests of same fitness value and another method for multimodal searching spaces using sub-global bests obtained by clustering.
Keywords :
genetic algorithms; particle swarm optimisation; average location; fitness quantization noise; genetic algorithms; interactive particle swarm optimization; multimodal searching spaces; multiple global bests; subglobal bests; Fatigue; Genetic algorithms; Humans; IEC; Noise level; Noise reduction; Particle swarm optimization; Performance analysis; Predictive models; Quantization;
Conference_Titel :
Evolutionary Computation, 2009. CEC '09. IEEE Congress on
Conference_Location :
Trondheim
Print_ISBN :
978-1-4244-2958-5
Electronic_ISBN :
978-1-4244-2959-2
DOI :
10.1109/CEC.2009.4983243