Title :
Variational inference for visual tracking
Author :
Vermaak, Jaco ; Lawrence, Neil D. ; Pérez, Patrick
Author_Institution :
Eng. Dept., Cambridge Univ., UK
Abstract :
The likelihood models used in probabilistic visual tracking applications are often complex non-linear and/or non-Gaussian functions, leading to analytically intractable inference. Solutions then require numerical approximation techniques, of which the particle filter is a popular choice. Particle filters, however, degrade in performance as the dimensionality of the state space increases and the support of the likelihood decreases. As an alternative to particle filters this paper introduces a variational approximation to the tracking recursion. The variational inference is intractable in itself, and is combined with an efficient importance sampling procedure to obtain the required estimates. The algorithm is shown to compare favorably with particle filtering techniques on a synthetic example and two real tracking problems. The first involves the tracking of a designated object in a video sequence based on its color properties, whereas the second involves contour extraction in a single image.
Keywords :
computer vision; edge detection; feature extraction; image colour analysis; image sequences; inference mechanisms; maximum likelihood estimation; object detection; optical tracking; target tracking; variational techniques; video signal processing; color property; contour extraction; likelihood model; nonGaussian function; nonlinear function; numerical approximation; object localization; particle filter; probabilistic visual tracking; sampling procedure; state space dimensionality; tracking recursion; variational approximation; variational inference; video sequence; Annealing; Filtering; Monte Carlo methods; Object detection; Particle filters; Particle tracking; Proposals; Recursive estimation; Uncertainty; Video sequences;
Conference_Titel :
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on
Print_ISBN :
0-7695-1900-8
DOI :
10.1109/CVPR.2003.1211431