Title :
Learning affinity functions for image segmentation: combining patch-based and gradient-based approaches
Author :
Fowlkes, Charless ; Martin, David ; Malik, Jitendra
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
Abstract :
The paper studies the problem of combining region and boundary cues for natural image segmentation. We employ a large database of manually segmented images in order to learn an optimal affinity function between pairs of pixels. These pairwise affinities can then be used to cluster the pixels into visually coherent groups. Region cues are computed as the similarity in brightness, color, and texture between image patches. Boundary cues are incorporated by looking for the presence of an "intervening contour", a large gradient along a straight line connecting two pixels. We first use the dataset of human segmentations to individually optimize parameters of the patch and gradient features for brightness, color, and texture cues. We then quantitatively measure the power of different feature combinations by computing the precision and recall of classifiers trained using those features. The mutual information between the output of the classifiers and the same-segment indicator function provides an alternative evaluation technique that yields identical conclusions. As expected, the best classifier makes use of brightness, color, and texture features, in both patch and gradient forms. We find that for brightness, the gradient cue outperforms the patch similarity. In contrast, using color patch similarity yields better results than using color gradients. Texture is the most powerful of the three channels, with both patches and gradients carrying significant independent information. Interestingly, the proximity of the two pixels does not add any information beyond that provided by the similarity cues. We also find that the convexity assumptions made by the intervening contour approach are supported by the ecological statistics of the dataset.
Keywords :
computational geometry; edge detection; feature extraction; image classification; image colour analysis; image segmentation; image texture; very large databases; visual databases; affinity function learning; boundary cue; classifier precision; classifier recall; convexity assumption; ecological statistics; gradient feature; gradient-based approach; human segmentation; image brightness; image color; image patch; image segmentation; image texture; intervening contour; optimal affinity function; pairwise affinity; parameter optimization; patch feature; patch similarity; patch-based approach; pixel clustering; pixel pair; pixel proximity; quantitative measurement; region cue; same-segment indicator function; segmented image; visually coherent group; Brightness; Humans; Image databases; Image segmentation; Joining processes; Mutual information; Pixel; Power measurement; Statistics; Visual databases;
Conference_Titel :
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on
Print_ISBN :
0-7695-1900-8
DOI :
10.1109/CVPR.2003.1211452