Title :
Using spiral intensity profile to quantify head and neck cancer
Author :
Kong, Koon Y. ; Sharma, Yogesh ; Raza, S. Hussain ; Chen, Zhuo Georgia ; Muller, Susan ; Wang, May D.
Author_Institution :
Georgia Inst. of Technol., Atlanta, GA
Abstract :
During the analysis of microscopy images, researchers locate regions of interest (ROI) and extract relevant information within it. Identifying the ROI is mostly done manually and subjectively by pathologists. Computer algorithms could help in reducing their workload and improve reproducibility. In particular, we want to assess the validity of the folic acid receptor as a biomarker for head and neck cancer. We are only interested in folic acid receptors appearing in cancerous tissue. Therefore, the first step is to segment images into cancerous and noncancerous regions. We propose to use a spiral intensity profile for segmentation of light microscopy images. Many algorithms identify objects in an image by considering pixel intensity and spatial information separately. Our algorithm integrates intensity and spatial information by considering the change, or profile, of pixel intensity in a spiral fashion. Using a spiral intensity profile can also perform segmentation at different scales from cancer regions to nuclei cluster to individual nuclei. We compared our algorithm with manually segmented image and obtained a specificity of 83.7% and sensitivity of 61.1%. Spiral intensity profiles can be used as a feature to improve other segmentation algorithms. Segmentation of cancerous images at different scales allows effective quantification of folic acid receptor inside cancerous regions, nuclei clusters, or individual cells.
Keywords :
biochemistry; biomedical optical imaging; cancer; cellular biophysics; image segmentation; medical image processing; optical microscopy; tumours; ROI identification; biomarker; cancerous region; cancerous tissue; computer algorithms; folic acid receptor; head-and-neck cancer quantification; image segmentation; individual nuclei; light microscopic image analysis; manually segmented image; noncancerous region; nuclei cluster; region-of-interest; spiral intensity profile; Cancer; Clustering algorithms; Data mining; Head; Image analysis; Image segmentation; Information analysis; Microscopy; Neck; Spirals;
Conference_Titel :
BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on
Conference_Location :
Athens
Print_ISBN :
978-1-4244-2844-1
Electronic_ISBN :
978-1-4244-2845-8
DOI :
10.1109/BIBE.2008.4696790